Applications Working Group

Objective:

Bring together many of the other scientific questions and approaches to solve problems

Projects of large extent (grand ideas):

Create an artificial mineral deposit

Create an artificial petroleum reservoir

- Construct a water reservoir at the surface to stress the subsurface
 - examine effect of increasing strain

Projects involving incremental advances:

Applications to mining technologies (and creation of holes in the ground):

- Location of new ore deposits
- Location of new ore deposits in a less invasive manner
- Extraction of ores in an environmentally friendly manner
 - -- Monitoring of lixiviant transport and fate
 - -- Hydrofracturing
 - -- Mitigation of the mined areas at end of extraction

DUSEL provides a place for testing extraction methods

Innovative Applications for Petroleum Technology

Key is fractured rock

- (1) Image the salt water in the rock from surface using P, S from surface, VSP, reverse VSP, and cross-well surveys
 - -- Dusel will provide opportunity for mine-back
 - -- Gain confidence in interpretation and development of new interpretation methodologies
- (2) Pump in fluids, e.g. water, gas, oil
- (3) Produce the fluid with the idea of being imaged to see where residual fluids
- (4) Mine-back must be "gentle" to determine how fluids are really distributed

Innovative Applications for Petroleum Technology

Key is fractured rock

- (1) Image the salt water in the rock from surface using P, S from surface, VSP, reverse VSP, and cross-well surveys
 - Dusel will provide opportunity for mine-back
 - Gain confidence in interpretation and development of new interpretation methodologies
- (2) Pump in fluids, e.g. water, gas, oi New term and
- (3) Produce the fluid with the idea of **concept** where residual fluids
- (4) Mine-back must be "gentle" to determine how fluids are really distributed

Specific questions:

- (a) Is the permeability of the rock mass in the same direction as the seismic anisotropy?
- (b) How much better resolution can be achieved by using seismic characterization arrays within the DUSEL facility?
- (c) Can high-frequency, powerful sources (~10 KHz as opposed to present 2 KHz sources) provide significant improvements in interpretation in cross-hole work?
- (d) Could hard rock information be transferred to soft rocks?
 - Fracture orientation issues do not transfer well from hard rock to sediments
 - Could hard rocks be useful at all? reduces effect of matrix porosity (removes a variable)

Needed:

A place to test all possible geophysical techniques to validate interpretations

Why is Dusel important for "Applications"?

- Need long-term, consistent access
 - -- Mines will not necessarily allow such access
 - -- Monitoring pillars and strength of the rocks over time requires long-term access to gallery-sized areas
 - -- Lithologic heterogeneity and varying pillar sizes important
- Rock burst monitoring can be done better at DUSEL than in operating mines
 - Mine-backs very important
 - Studies of this sort are not being done anywhere else in the world
- Provides a platform for development and testing of novel methods of mine support
- A deep, dedicated facility would have intermediate levels - not restricted to operating areas

CARBON SEQUESTRATION

- Typical use of a reservoir after petroleum production
- DUSEL could help in examination of chemistry of the pore spaces
- Leakage outside of casing in old wells is a serious issues
 - DUSEL could allow examination of possible remediation methods
 - Might be able to mine back to an old well bore

Homeland Security

- Low background counting
 - solids, or gases
 - -- Characterization of slight contamination on materials of interest
 - -- ultra low level new standards for analytical techniques
- Construct large vertical loops between shafts
 - -- submarine communication (similar to VLF but more effective)
 - -- could investigate high electrical conductivity layer at 20 30 km depth

Low noise will also help other disciplines

- Biomedical
 - Smaller amounts of tracers in people required, therefore, fewer side effects
 - Feasibility study of whole body count
 - Clean rooms/environments in underground facilities could be used as a control for study of asthmatics
 - Comparative studies of effects of radon/low radon living areas
- Evaluate mutation rates due to cosmic radiation by comparing biological samples at the surface to similar ones in the bottom of the facility

- Underground manufacturing and development
- Electroforming of copper underground
- Detector fabrication for the physicists
- Reduction of radiation damage in chips for electronics industry
- Development of low-concentration standards for neutron activation (and other nuclear analytical techniques)
- Energy storage by pumped hydro power
 - -- Increase in height results in less mass needed
 - -- Build additional cavities for energy storage
 - -- Evaluate effect of oscillating heads on rock strength

.

Education Implications –

- DUSEL may help to maintain interest in mining applications
- Dusel may help in training for mining/business enterprises
- Coal mining remains important although productivity increases decreases number of people involved
- Remediation requirements may represent the greater need for people in the long term